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Introduction 
 

According to the World Bank (2009) water table of 

60% of the aquifer will be endangered within 15-20 

years in India due to overexploitation of 

groundwater for agricultural purposes. The 

groundwater simulation model is a potent possible 

technique among other ways to investigate and 

understand the groundwater dynamics, which 

effectively simulates the response to stress in the 

system. It can be applied as a management tool for 

adopting different policies to seek the best among 
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The management and sustainable use of groundwater resources are critical components in 

addressing global water challenges. In this context, inverse groundwater modeling has emerged 

as a powerful tool for characterizing subsurface properties, optimizing resource utilization, and 

mitigating the impacts of anthropogenic activities on aquifers. This review paper provides a 

comprehensive and up-to-date survey of the advancements in inverse groundwater modeling 

techniques, methodologies, and applications. The paper begins by presenting an overview of the 

fundamental principles underlying inverse modeling, elucidating the mathematical frameworks 

and numerical algorithms employed in estimating subsurface parameters. It explores various 

geophysical and hydrogeological data types commonly utilized in inverse modeling, such as 

hydraulic head measurements, and geophysical surveys. The integration of multiple data sources 

for enhancing model reliability and reducing uncertainty is also discussed. Furthermore, the 

review highlights recent developments in regularization techniques, sensitivity analysis, and 

uncertainty quantification within the context of inverse groundwater modeling. Case studies 

from diverse hydrogeological settings illustrate the practical applications of these 

methodologies in real-world scenarios, showcasing their efficacy in addressing complex 

groundwater management challenges, including contaminant transport, aquifer recharge, and 

sustainable resource exploitation. The review concludes by outlining current research gaps and 

future directions in the field of inverse groundwater modeling, emphasizing the need for 

interdisciplinary collaboration, data integration, and advanced computational approaches. This 

synthesis of contemporary knowledge serves as a valuable resource for researchers, 

practitioners, and policymakers engaged in groundwater management and environmental 

sustainability. 
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them and works as a future scenario predictor (Zhou 

and Li, 2011). The reliability of groundwater state 

(groundwater head) estimation depends upon the 

accuracy of estimated sub-surface parameters. These 

aquifer parameters are transmissivity, hydraulic 

conductivity, storage coefficient and dispersivity 

(Rastogi, 2012). The pumping test and graphical 

matching are the oldest and most common 

techniques to determine these parameters. However, 

these techniques are based on governing equations 

with closed form solution and are generally 

restricted to homogeneous and isotropic aquifer 

domains (Theis, 1935). 

 

In the recent years, an advanced, economically- 

feasible and automatic technique called inverse 

groundwater modelling has become a widely used 

mathematical practice to estimate aquifer parameters 

(Figure 1).  

 

Using inverse problem, distributed parameters are 

assigned to a mathematical model with known 

boundary conditions in such a way, that it minimizes 

the error between the observed and simulated state 

variables (Lakshmi Prasad and Rastogi, 2001). 

Many researchers widely applied the inverse 

problem to explore different areas in groundwater 

like, parameter estimation (Nelson 1960, 1961; 

Yoon and Yeh 1976; Cooley, 1982; Hoeksema and 

Kitanidis, 1985; Mahinthakumar and Sayeed, 2005; 

Yaoand Guo, 2014; Yeh and Yoon, 1981), 

contaminant source identification (Aral et al., 2001; 

Mahar and Datta, 2001, 1997; Snodgrass and 

Kitanidis, 1997) and coupled inverse problem (Sun 

and Yeh, 1990). Evolution of inverse problem with 

passage of time is presented in a detailed manner by 

Yeh (1986); Carrera et al., (2005); Vrugt et al., 

(2008); Zhou et al., (2014) and Yeh (2015) in their 

review papers. The main scope of the present study 

is development of effective simulation-optimization 

(SO) model estimating aquifer parameters. The 

simulation models based on FEM and meshfree 

(Mfree) are developed and coupled with different 

metaheuristic based optimizations models and 

eventually are applied to a large aquifer system and 

the model accuracy and efficiency are compared. 

The solution of inverse problem was more 

prominently investigated after 1960 with its 

application on geo-physical exploration. Neuman 

(1973) was the first person who classified these 

approaches on the basis of their solution strategy, as 

direct and indirect methods. Similarly, Chavent 

(1979) classified these two methods based on the 

perspective of error criteria and named them as 

equation error criteria method and output error 

criteria method respectively. The main objective of 

the direct method is to minimize this equation error 

using two approaches, which are matrix method and 

mathematical programming methods (Sun, 1999).  

 

The matrix method acquires solution by inversion of 

a matrix, however, mostly the obtained solution 

smears due to ill- conditioning of matrix equations 

(Figure 2). Emsellem and Marsily (1971); Frind and 

Pinder (1973); Sagar et al., (1975) and Yeh et al., 

(1983) used matrix inversion approach for 

groundwater parameter estimation. In the 

mathematical programming approach, the inverse 

problem is converted into linear programming (LP) 

problem and aquifer state governing equations are 

utilized as constraints. This approach is based on the 

assumption that aquifer parameters are a linear 

function of error; therefore, the simplex method is 

employed to get optimum parameter values. 

Neuman (1973) and Hefez et al., (1975) were some 

researchers that applied the linear programming for 

the inverse groundwater problem. 

 

The indirect method can be classified based on 

solution technique used i.e. gradient based 

optimization and non- gradient based optimization 

approach. In the first approach, gradient improves 

the initial guess of parameter until the optimum 

value is achieved. Some examples of gradient based 

approaches are Levenberg- Marquardt method 

(Keidser and Rosbjerg, 1991), Gauss- Newton 

method (Kitanidis and Lane, 1985) and Conjugate 

gradient method (Carrera and Neuman, 1986). 

Generally, local optima based solution strategies 

don’t have the potential to tackle these kinds of 

peculiarities and have a larger probability to get 

stuck into the local minima.  
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In last two decades, a new paradigm shift is being 

observed in the field of groundwater management, 

due to the introduction of population-based 

stochastic search methods, which belongs to non- 

gradient based classification.  

 

The advantages of these global search methods are: 

(1) These are based on the random search, hence it is 

able to explore the whole solution space (2) It 

doesn’t require the objective function to be 

continuous, hence it can work efficiently on discrete 

problems (3) These are highly robust method with 

guaranteed global solution (Chiu, 2014).  

 

Various methods of this class have been successfully 

applied in the field of groundwater, which are: 

genetic algorithm (GA) (Harrouni et al., 1996; 

Lakshmi Prasad and Rastogi, 2001), simulated 

annealing (SA) (Zheng and Wang, 1996), particle 

swarm optimization (PSO) (Ch and Mathur, 2012), 

ant colony optimization (ACO) (Abbaspour et al., 

2001), artificial bee colony optimization (ABCO) 

(Li et al., 2006), co- variance matrix evolution 

adaptation strategy (CMA-ES) (Elshall et al., 2015), 

differential evolution (DE) (Chiu, 2014; Rastogi et 

al., 2014) and cat swarm optimization (CSO) 

(Thomas et al., 2018) amongst others. 

 

Literature review on inverse groundwater 

modelling 

 

Direct method 

 

Nelson (1961, 1960) presented maiden work on the 

direct method for parameter estimation. Finite 

difference approximation is utilized for the inversion 

of flow equation along the streamline to calculate 

the hydraulic conductivity and transmissivity values. 

The projected method was applied to two and three-

dimensional isotropic homogeneous confined and 

unconfined aquifers in the steady state. 

 

Emsellem and De Marsily (1971) proposed an 

automatic direct method to calculate the 

transmissivity, storativity and recharge value using 

finite difference. He introduced the regional 

distribution concept of aquifer parameters. The main 

aim of this study was to minimize the norm of error 

of flow to estimate the mean value of different 

aquifer zones in two-dimensional steady and 

transient states. 

 

Sagar et al., (1975) proposed the direct method to 

identify the aquifer parameters in the anisotropic and 

non-homogenous aquifer, for the transient 

conditions.  

 

The head data over unknown nodes were obtained 

using Lagrange and spline interpolation techniques. 

The governing groundwater flow equations were 

solved using algebraic approach and without 

iterative improvement.  

 

Yeh et al., (1983) presented a model to estimate the 

transmissivity values in the two-dimensional 

confined aquifer for the transient condition. They 

used more advanced technique like krigging for 

head values interpolation. Finite element method 

was employed to discretize the governing equation. 

This method was suitable for domain having a small 

dimension or less number of the parameters.  

 

Irsa and Zhang (2012) presented a novel method to 

estimate aquifer parameters for steady state 

condition with unknown boundary conditions. This 

method is based on the potential theory technique 

which was successfully applied to general inverse 

problems. They also showed the accuracy of 

proposed method which increases with higher 

number of observation head data, lower observation 

error and grid refinement.  

 

Jiao and Zhang (2016) used the technique 

introduced by Irsa and Zhang (2012) for the 

parameters estimation in contaminant transport 

problem. 

 

As discussed by most of the authors, the direct 

method has limitation like requirement of large 

number of observation well data which is difficult to 

follow for large scale regional groundwater flow 

problems. 
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Indirect method 

 

Indirect methods utilizes the SO model to solve the 

inverse problem. In this method, the simulation and 

optimization models are solved simultaneously. 

Optimization model provides the input in terms of 

parameters to simulation model for calculation of 

simulated head values which eventually utilized to 

evaluate the objective function iteratively. SO model 

utilizes the gradient based or non-gradient based 

optimization approaches that are discussed in terms 

of literature review in the upcoming sections. 

 

Simulation technique used in groundwater 

 

Wu et al., (2010) developed a regional groundwater 

flow model coupled with a deformation model to 

simulate land subsidence, called modified merchant 

model. It was solved using Multidimensional 

iterative finite element method for land subsidence 

in Shanghai city due to overexploitation of water. 

This model was initially calibrated using 28,184 

hydraulic head data and 26,732 deformation data of 

past 45 years (1961 to 2005). This calibrated model 

further used for prediction of the future scenario of 

land subsidence up to the year 2020. 

 

Paris et al., (2010) modeled an aquifer system in 

Venice lagoon region using a complex three- 

dimensional finite element model (FEM) using FE- 

FLOW 5.3. This model analysis was carried out (1) 

to study the effect of the cutoff wall on the 

hydrologic regime; (2) to mitigate the related 

inundation hazard to prevent the erosion of polluted 

land and discharge of contaminant groundwater with 

surface water in the lagoon area. Whole aquifer 

domain was discretized by 3-D mesh consisting of 

310,000 nodes and 550,000 triangular prismatic 

elements. This model was initially applied on a 

regional regime and then on the local regime to 

study the drained groundwater volume along a 5-km 

long bank of a harbor canal. Simulation results 

indicated, the decline in sub surface discharge in 

lagoon area is up to 85% and 1-m increment in the 

water table in the inland city of Mestre, Italy due to 

the construction of the cut-off wall.  

Mondal et al., (2010) developed a SO model for the 

treatment of an Aquifer located at Vadodara, 

Gujarat, India affected by total dissolved solid 

(TDS) as the main pollutant for identifying the best 

pump and treat policy. Simulation of groundwater 

and contaminant transport was performed by Finite 

element approximation, which was further coupled 

with non- dominant sorting genetic algorithm-II 

(NSGA-II) for multi-objective optimization.  

 

The model was developed for minimizing cost 

function and time period for the remediation of the 

aquifer subject to bounds on pumping rates, 

groundwater heads, and concentration levels of the 

contaminant at all nodes of aquifer domain. Further 

three scenarios of a combination of pumping 

through abstraction wells and flushing through four 

recharge ponds were considered with different 

locations of extraction wells.  

 

Hendricks Franssen et al., (2011) presented first sub 

surface flow model, which is able to assimilate the 

real-time daily data of piezometric head for aquifer 

characterization. The obtained results were better 

than inversely calibrated data, which uses historical 

data and doesn’t get it updated. In the proposed 

approach the aquifer parameters i.e. hydraulic 

conductivity and leakage coefficients are updated 

using Enhanced Kalman filter (EnKF) to get the 

head values for the Water Works Zurich and the 

simulation period of January 2004 to December 

2007. The whole three-dimensional simulation 

model is discretized using Galerkin finite element 

method.  

 

Engeler et al., (2011) developed a 3-D finite element 

model of coupled groundwater flow and heat 

transport for Hardhof in Limmat Valley, Zurich 

(Switzerland). Hydraulic conductivity of aquifer and 

leakage coefficient of river bed both were estimated 

using pilot point inverse modeling. The temperature 

was used as a common linking variable between 

hydraulic conductivity and storage coefficient for 

coupling. The obtained results (temperature and 

head) showed greater agreement in three pumping 

wells and seven piezometric locations.  
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Banerjee et al., (2011) applied an artificial neural 

network (ANN) for safe pumping rate assessment to 

uphold salinity in Kavaratti Island aquifer, India. For 

the forecasting of salinity for different pumping rate, 

feed forward ANN model with quick propagation 

(QP) as training algorithm with 2 years of real- time 

field data had been used. Prediction on water quality 

with varying pumping rate was made for a span of 5 

years. The output obtained from ANN model was 

further compared with real field data and predicted 

data through SUTRA (FEM). Due to the nonlinear 

nature of ANN, it showed exceptional convergence 

for analyzing real- world data.  

 

Radu et al., (2011) performed a comparative study 

using different numerical schemes i.e. Galerkin 

finite element (GFE), Mixed hybrid finite element 

(MHFE) and finite volume (FV) for simulation of 

contaminant transport for heterogeneous porous 

media and quantified the numerical diffusion for the 

different schemes and its dependency on the Peclet 

number. The study showed that for the real problems 

(i.e. heterogeneity in parameter distribution), the 

differences between lower and higher order schemes 

were negligible but at same time computational cost 

increased. 

 

Chandio et al., (2013) studied the different remedial 

measures to prevent waterlogging condition due to 

seepage through Rohri canal on 1,000 ha of 

agricultural land near the Gambat railway station, 

district Khairpur, Sindh, Pakistan. To study the 

problem a 3-D finite element groundwater flow and 

solute transport based tool FEMGWST (developed 

at Universiti Putra Malasia) was used to evaluate the 

effectiveness of horizontal and vertical drainage 

systems, either independently or simultaneously. 

Ultimate results from analysis confirmed that 

combined drainage system is effective to reduce 

waterlogged area and it increased agricultural 

farmland for more crop yield. 

 

Sherif et al., (2014) developed 2-D finite element 

groundwater and solute transport model to study the 

salinity distribution in coastal aquifer of Wadi Ham, 

United Arab Emirates. The reason for seawater 

intrusion was a lack of rainfall and excessive 

pumping of groundwater which resulted in 

deterioration of groundwater quality, termination of 

domestic water supply and abandoned farms in 

nearby Fujairah city. The whole investigation was 

based on the transition zone between freshwater and 

seawater; and accordingly simulations were 

conducted in horizontal view under a transient 

condition with different pumping scenario.  

 

Optimization approaches used in indirect method 

 

Gradient-based optimization approach 

 

Vemuri and Karplus (1969) presented an inverse 

model to estimate the hydraulic conductivity values 

in an unconfined aquifer. To minimize the objective 

function steepest descent algorithm was employed. 

Boundary conditions and storage coefficient values 

were fed to the inverse model and finite difference 

scheme was used to discretize the governing 

equation. 

 

Cooley (1977) used non-linear least- square 

regression for an inverse problem for estimation of 

parameters like hydraulic conductivity (K), source-

sink (Q) and flux values. Simulation of head values 

was performed by finite element method for 

confined aquifer domain in steady state condition. In 

this work non-linear system of the equation was 

solved by modified Gauss- Newton algorithm. 

 

Chavent et al., (1975) applied the optimal control 

theory to obtain the permeability distribution. To 

minimize non- quadratic criteria steepest descent 

method was used and for the same, the gradient was 

calculated using adjoint state method with available 

minimum computation time. The whole procedure 

was also followed for transmissivity estimation in 

two-dimensional aquifer domain.  

 

Yeh and Yoon (1981) presented a synthetic model to 

estimate the optimum transmissivity values. Finite 

element method was used to discretize the two-

dimensional governing equation. Later the values 

obtained through the forward model were fed to the 
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modified Gauss- Newton optimization model to 

minimize the error based on least square criteria. 

The norm of covariance matrix was also calculated 

to test the reliability of the obtained parameters. 

 

Sun and Yeh (1985) developed a model to structure 

identification and parameter estimation. The 

governing equation was discretized using finite 

element approximation. To obtain the nodal values 

of the gradient (sensitivity coefficient), the 

variational method was employed and later used for 

Gauss- Newton optimization method. They also 

used an automatic parameterization technique which 

was able to identify the zonation or continuous 

distribution of transmissivity.  

 

Khan (1986) developed an inverse groundwater 

model consisting of unconstrained multivariate 

optimization (modified version of Newton`s second 

derivative method) and finite difference model for 

simulation of head values.  

 

Li and Elsworth (1995) applied the Gauss-Newton 

method (GNM) for groundwater parameter 

estimation for transient condition. They used all 

three approaches i.e. influence coefficient method, 

sensitivity equation method and variational method 

to obtain the sensitivity coefficient. These all three 

methods were applied to a synthetic problem to get 

the better performance among them. It was found 

that GNM is performing well for a limited number 

of parameters.  

 

Li and Yang (2000) proposed a new algorithm to 

minimize the objective function based on the 

generalized Gauss- Newton method for estimation 

of transmissivity. In this method, a scaling matrix 

was introduced to overcome the irregularity in 

weighting effect of residuals in each iteration.  

 

By applying scaling matrix correction the results 

obtained were enthusiastic and performed well with 

less computational cost, provided scaling matrix is 

not being the identity matrix. This method 

encouraged to take a wide range of initial value of 

unknown parameters, with quick convergence. All 

these facts demonstrated the potential of the 

algorithm to solve inverse problems of more 

complicated nonlinear aquifer models naturally and 

quickly on the basis of finding suitable forms of the 

scaling matrix and the pre-conditioner.  

 

Franssen et al., (2003) presented a coupled inverse 

model of groundwater flow and mass transfer. 

Conjugant gradient and steepest descent algorithms 

were used to minimize the error function (sum of 

squared error in groundwater head and concentration 

value at each node). The sensitivity coefficients 

(derivative of objective function w.r.t. log 

conductivities, log storativities, prescribed heads at 

boundaries, retardation coefficients and mass 

sources) for Jacobin were calculated using adjoint 

state method. Presented model was successfully 

applied to a synthetic problem and it also improved 

the prediction of flow and aquifer characteristics if 

optimum amount of experimental data of 

groundwater head and concentration is available.  

 

Non- gradient based optimization approach  

 

Aral et al., (2001) presented the solution for 

contaminant source identification problem using the 

progressive genetic algorithm (PGA). The main 

objective of this problem was to minimize the 

residual between observed and simulated 

concentration values. The proposed method was 

found very efficient and cost effective as it reduces 

the repeated solutions.  

 

Lakshmi Prasad and Rastogi (2001) used genetic 

algorithm (GA), as global optimization tool coupled 

with finite element method for simulation of 

groundwater head values in the intermediate points 

of confined aquifer problem. Initially coupled 

algorithm applied to a synthetic rectangular aquifer 

for estimation of transmissivity and the accuracy in 

results proved it to be a robust model. Later the 

same model was applied to a real field unconfined 

aquifer for estimation of hydraulic conductivity and 

recharge parameters. The solution obtained through 

GA model was compared with Gauss- Newton- 

Marquardt (GNM) method and proved superior.  
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Table.1 Literature review for an inverse problem in groundwater using direct method. 

 

Governing equations Numerical scheme Parameter to be 

identified 

Interpolation scheme References 

Two and Three 

dimensional confined and 

unconfined aquifer 

(steady state) 

Finite difference method  Hydraulic conductivity and 

transmissivity 

 (Nelson, 1960 and 1961) 

Two-dimensional 

confined aquifer (steady 

and transient state) 

Finite difference method  Transmissivity, Storativity, 

and Recharge  

 (Emsellem and De 

Marsily, 1971) 

Two-dimensional 

anisotropic and non- 

homogeneous confined 

aquifer (Transient state) 

 Transmissivity, Storativity, 

and Recharge  

Lagrange and spline 

interpolation 

(Sagar et al., 1975) 

Two-dimensional 

unconfined aquifer 

(Transient ) 

Finite difference method  Transmissivity Krigging (Yeh et al., 1983) 

Two-dimensional 

confined aquifer (steady) 

Based on potential theory 

technique  

Hydraulic conductivity and 

Darcy’s flux 

 (Irsa and Zhang, 2012) 

Two-dimensional 

unconfined aquifer 

(steady ) 

Based on potential theory 

technique 

Hydraulic conductivity, 

Darcy’s flux and 

concentration  

 (Jiao and Zhang, 2016) 
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Table.2 Literature review for an inverse problem in groundwater using indirect method (Gradient-based approach). 

 

Governing 

equations 

Numerical scheme Parameter to be identified Inverse- solution procedure References 

2D confined 

aquifer (transient) 

Finite difference  Transmissivity, Storage 

coefficient and boundary of 

aquifer 

Steepest descent method  (Vemuri and 

Karplus, 1969) 

2-D steady state  Finite element Hydraulic conductivity (k), 

Source-sink (Q) and flux 

Modified Gauss- Newton (Non-linear 

regression) 

(Cooley, 1977) 

 Finite difference  Transmissivity and permeability  Steepest descent method (Chavent et al., 

1975) 

2D confined 

aquifer (transient) 

Finite element Transmissivity Gauss- Newton algorithm (Yeh and Yoon, 

1981) 

2D confined 

aquifer (transient) 

Finite element Transmissivity Gauss- Newton algorithm (Sun and Yeh, 

1985) 

2-D Unsteady state, 

Unconfined 

problem 

Finite difference  Hydraulic conductivity (k) Powell`s algorithm 

Fletcher- Powell`s algorithm 

Newton-Khans algorithm  

(Khan, 1986) 

2D confined 

aquifer (transient) 

Finite element Transmissivity Gauss- Newton algorithm (Li and 

Elsworth, 1995) 

2-D Unsteady state, 

Unconfined 

problem 

Linear triangle finite 

element method 

Transmissivity  Gauss- Newton method with improvement 

as incorporation of scaling matrix  

(Li and Yang, 

2000) 

Confined aquifer 

with solute 

transport equation 

Block center finite 

difference method 

Transmissivity Gradient-based methods (Franssen et al., 

2003) 
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Table.3 Literature review for inverse problem in groundwater using indirect method (Non- gradient based approach). 

 

Governing equations Numerical scheme Parameter to be 

identified 

Inverse- solution procedure References 

2-D unconfined aquifer 

flow and transport 

Finite element method Source location and 

contaminant flow rate  

Progressive genetic algorithm  (Aral et al., 2001) 

2-D Non-homogeneous 

confined and 

unconfined  

Finite element method Transmissivity, Hydraulic 

conductivity and recharge 

parameter  

Genetic Algorithm (GA) results were, 

compared with Gauss-Newton-Marquardt 

(GNM) method. 

(Lakshmi Prasad 

and Rastogi, 

2001) 

2-D homogeneous 

confined isotropic 

Finite element method Pumping cost  Real-coded GA  (Yoon and 

Shoemaker, 2001) 

Contaminant transport 

through a saturated 

mono-dimensional 

porous medium 

processes 

 Velocity and dispersivity 

parameters 

Genetic Algorithm (Giacobbo et al., 

2002) 

2-D homogeneous 

confined 

Finite difference 

(MODFLOW) 

Transmissivity GA, grid search and BFGS (Tsai et al., 2003c) 

2-D Confined aquifer  Galerkin finite 

element method 

Transmissivity Simulated Annealing (SA)  (Snehalatha et al., 

2006) 

two- dimensional, 

heterogeneous-isotropic, 

confined aquifer  

Finite difference Transmissivity Genetic algorithm (Ayvaz et al., 

2007) 

Dore River basin 

(Unconfined aquifer) 

Analytical element 

method (AEM) 

Groundwater 

management problem for 

minimization of discharge 

and pumping cost 

Particle swarm optimization (PSO) (Gaur et al., 2011) 

Three- dimensional, 

heterogeneous-isotropic, 

unconfined  

Finite difference 

(MODFLOW and 

MT3DMS) 

Source identification  Simulated annealing (Jha and Datta, 

2012) 

Three- dimensional, 

heterogeneous-isotropic, 

unconfined 

Finite difference 

(MODFLOW and 

MT3DMS) 

Source identification Adaptive simulated annealing (ASA)  (Jha and Datta, 

2013) 
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2-D Confined aquifer 

with contaminant 

transport equation 

FEM Transmissivity, 

longitudinal dispersivity, 

transverse dispersivity.  

Genetic algorithm (GA), Simulated 

annealing (SA) and Gauss-Newton-

Marquardt (GNM) 

(Rastogi and 

Huggi, 2013) 

2D Synthetic problem 

and real field problem 

(Pingtung Plain, 

Taiwan) 

FDM Transmissivity and 

structural identification  

Differential evolution (DE) Chiu, (2014) 

Two- dimensional, 

heterogeneous-isotropic, 

confined (steady) 

Finite difference 

(MODFLOW and 

MT3DMS 

Transmissivity Differential evolution (DE) (Gurarslan and 

Karahan, 2015) 

Three- dimensional, 

heterogeneous-

anisotropic, unconfined 

Finite difference 

(MODFLOW and 

MT3DMS 

sequential- monitoring 

network design and a 

source identification 

method 

Simulated annealing (Prakash and 

Datta, 2015) 

Two- dimensional, 

heterogeneous-isotropic, 

confined (steady) 

Finite difference 

(MODFLOW and 

MT3DMS 

Source identification Hybrid of binary GA and generalized 

reduced gradient method  

(Ayvaz, 2016) 

 

Fig.1 Inverse groundwater model 
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Fig.2 Flowchart of the direct method based on matrix inversion approach. 
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Fig.3 Flow chart of indirect method. 

 

 
 

Yoon and Shoemaker (2001) presented a maiden 

work on inverse model based on a real-coded 

genetic algorithm (RGA) for bioremediation 

problem. RGA results were compared with binary 

coded GA (BIGA) and were found highly efficient 

with directive recombination with screened 

replacement operators during application to two 

synthetic aquifer bioremediation problems. 

 

Giacobbo et al., (2002) investigated the possibility 

to use genetic algorithm for estimation of parameters 

of a groundwater contaminant transport model. In 

this study, a mono- dimensional advection-

dispersion model simulated a three- layered mono- 

dimensional saturated medium. Here the objective 

function was the sum of squared residual between 

pseudo-experimental data, obtained with true values 

of the parameters, for estimation of velocity and 

dispersivity parameters. Concentration profiles were 

computed using estimated parameters. The result 

obtained through investigation indicated that method 

is capable of parameter estimation with higher 

accuracy even in the case of assimilated substantial 

noise in data. 

 

Tsai et al., (2003a) applied the genetic algorithm 

with grid search method and quasi- Newton 

algorithm for parameter identification. Voronoi 

tessellation method is employed as parameterization 

method and coupled form of flow and transport 

equations were solved respectively using tools 

MODFLOW and MT3DMS.  
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Snehalatha et al., (2006) developed a model for 

groundwater parameter estimation (transmissivity) 

using simulated annealing (SA), a global 

optimization method. Galerkin finite element 

method was used for simulating groundwater head 

values in synthetic rectangular confined aquifer, 

with the assimilation of the source and sink terms 

for steady and transient conditions. 

 

Ayvaz et al., (2007) proposed a coupled SO model 

where kernel- based fuzzy c-means (KFCM) 

technique was used for parameterization, due to its 

proficiency to cluster non-spherical shaped data 

points. Genetic algorithm was clubbed with finite 

difference method to determine the aquifer 

parameters and zonal pattern in a synthetic domain. 

As these heuristic based algorithms generate 

population (parameters) randomly it is free from the 

prerequisite of initial guess of parameters which is 

required in gradient-based optimization. 

 

Gaur et al., (2011) clubbed the Analytical element 

method (AEM) simulator with Particle swarm 

optimization (PSO) to solve groundwater 

management problem. The presented model 

successfully simulated to get a maximum discharge 

and minimum cost for the Dore river basin, France. 

 

Jha and Datta (2012) applied the SA as optimization 

model in contaminant source identification problem. 

For flow and contaminant estimation over entire 

domain MODFLOW and MT3DMS tools were 

used. The main objective of this study was to 

identify the source and its flux quantification. The 

obtained results were later compared with the 

genetic algorithm and were found in the favour of 

SA.  

 

Jha and Datta (2013) presented adaptive simulated 

annealing (ASA) based SO model for the 

determining the groundwater contaminant source 

character. The results were compared with GA. This 

study showed that the location of monitoring well is 

also a very critical parameter to get the best solution. 

Rastogi and Huggi (2013) applied the heuristic 

methods genetic algorithm (GA) and simulated 

annealing for structural characterization of the 

aquifer. GA was used for estimation of hydraulic 

conductivity and aquifer recharge for a real field 

problem, while SA used for a synthetic confined 

aquifer. Composite scale sensitivity and coefficient 

of variance were also performed as reliability 

parameters. After incorporation of noise in the field 

parameter, estimated results were acceptable from a 

practical point of view. 

 

Chiu (2014) applied DE as an optimizer to solve the 

parameter- structure- identification problem. DE 

effectively minimized the objective function and 

results showed its robustness and efficiency over the 

conventional GA. The proposed DE later applied to 

real groundwater system of Pingtung Plain in 

Taiwan to identify the aquifer properties.  

 

Gurarslan and Karahan (2015) solved the inverse 

problem for groundwater pollution identification. 

They used differential evolution as optimization 

algorithm to quantify the source in two synthetic 

aquifers. The first aquifer had the real observation 

data while the second one was corrupted with noisy 

data. These results were later compared with an 

already existing solution obtained through artificial 

neural network (ANN), GA and Harmony search 

(HS).  

 

Prakash and Datta (2015) applied the SA for 

sequential monitoring network design and source 

identification. In this study initially measured flux 

from the real field was fed to the forward model to 

get the concentration value over entire domain for 

next time step (if identified flux is not satisfactory). 

Then gradient of pollutant concentration was 

calculated which was used afterward for designing 

of a monitoring network for next sampling time step. 

Therefore on the basis of new well location, the flux 

values obtained through new well will be feed to the 

optimization model to identify the source of the 

pollutant.  

 

Ayvaz (2016) presented a novel hybridized 

approach engaging binary genetic algorithm and 

generalized reduced gradient method for source 
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identification problem. It was applied to a 

hypothetical aquifer problem and the results were 

compared with genetic algorithm with varying 

parameters.  

 

In conclusion stated that in order to solve the inverse 

problem using indirect method various, simulation 

and optimization models were used, which have 

their own advantages and shortcomings. Further, 

based on the survey of literature on different 

simulations and optimization models briefly 

presented in Table 1 to 3 the following conclusions 

can be drawn.  

 

Most of the research work in the field of inverse 

groundwater modelling is dedicated to synthetic 

rectangular aquifer domain and very largely without 

considering actual scenario. These efforts are 

laudable, however, they are far from the real field 

problems, which often involve surface recharge, 

pumping-injection wells, heterogeneity, anisotropy, 

variable river-heads, boundary flow and aquifer 

outflows. 

 

Most of the inverse problems are solved iteratively 

using the indirect method, where the forward 

problem (simulation) is needed to run many times 

until desired parameters are not achieved. Many of 

these old simulation models (FEM and FDM) rely 

on certain kind of mesh-structures to approximate 

the field derivative over an entire domain which 

makes them very expensive in terms of 

computational and time resources. Therefore the 

methods without mesh or elemental connectivity can 

be tested as a simulator for inverse problem solution.  

 

In the past two decades, many evolutionary 

algorithms of optimization have been applied by 

researchers to solve a various range of problems in 

inverse groundwater modelling. Therefore, a 

comparative study between various heuristic-based 

optimization techniques i.e. genetic algorithm (GA), 

particle swarm optimization (PSO), differential 

evolutional (DE) and covariance matrix adaptation 

strategy (CMAES) and their hybridized versions for 

the solution of inverse problems like parameter 

estimation can be tested. 

The conclusions based on the above literature 

review provided the trend of research gap in the area 

of inverse groundwater model; hence the same has 

helped to improve the current research work and 

provide the direction to the upcoming research 

works. 
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